

Sprinter: Environment Management Made Easier

Sprinter is a tool to help create environment bootstrapping scripts and manage developer environments.

Here are some problems that sprinter was designed to solve:

	syncing up personal development environments across computers

	syncing rc files

	installing packages

	configuring systems (e.g. git or ssh configs, setting up the PS1/shell prompt)

	distributing standard development tools and helpers across a company or organization

	distributing common shell scripts

	distributing third-party packages

	distributing internal packages

	performing strange on-time-setup quirks and workarounds when you
can’t get around to fixing it

	managing multiple development environments on a single machine

	need to switch between personal and company-specific environment

	need to switch between environments for open-source projects

Sprinter was designed with modularity, adaption, and cross-compability in mind. Some of the features of sprinter include:

	Installing environments directly from configs on the web

	Updating existing environments

	Managing several environments, activating and deactivating as needed

	Dynamically installing new functionality via formulas

	Sandboxing environments as necessary, such as brew or node.js

Install Instructions and Tutorial

Please refer to the readme [https://github.com/toumorokoshi/sprinter/blob/develop/README.rst] for instructions on installing sprinter.

It’s a good first step to follow the Sprinter Tutorial

Compatible Systems

Sprinter is currently actively developed against the following operating systems:

	OSX

	Ubuntu

	Arch

And the following shells:

	bash

	zsh

However, Sprinter should work against Debian distributions, and most Ubuntu-based distributions.

Feel free to make a ticket [https://github.com/toumorokoshi/sprinter/issues?state=open] with
your difficulties with other unix-based operating systems.

There are currently no plans to develop sprinter against non-unix
based operating systems (such as Windows). However, if you’re feeling
ambitious, post your thoughts in the Google Group [https://groups.google.com/forum/#!forum/sprinter-dev].

Questions?

Try our FAQ, or post a topic in the
Google Group [https://groups.google.com/forum/#!forum/sprinter-dev].

Contents

	Sprinter Tutorial
	Installation

	Build a sprinter configuration file

	What next?

	FAQ
	Sprinter keeps overriding my custom *rc! How can I stop it?

	How do I make a sprinter formula?

	I need help! Who do I talk to?

	Sprinter Examples
	Sprinter patterns

	Installing Sub

	List of existing sprinter formulas

	Sprinter Formulas
	Where to find formulas

	Standard Formula Options

	Manifests
	Special Sections

	Variable substitution

	Environment Lifecycle
	Installation

	Upgrade

	Remove

	Deactivate

	Activate

	Sprinter Internals
	Environment activation/deactivation

	OSX Best Practices

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Sprinter Tutorial

In this tutorial, you will learn:

	How to write a sprinter manifest file

	How to ask for user input (username, password, etc)

	How to use user input

Installation

First, you need to install sprinter. You can find install instructions in the sprinter readme
here [https://github.com/toumorokoshi/sprinter/blob/develop/README.rst].

Build a sprinter configuration file

Each sprinter environment is completely defined by a sprinter
configuration file. Think of this file as your main way of managing
your sprinter environment: any changes you make here will be picked up
next time you update your environment. Here’s a good starting point
for a sprinter config:

[config]
namespace = myenvironment

[git]
formula = sprinter.formula.package
apt-get = git-core
brew = git

[github]
formula = sprinter.formula.ssh
keyname = github.com
nopassphrase = true
type = rsa
host = github.com
user = git
hostname = github.com

What does this do? Well, give it a shot! Write this to a file called
myenvironment.cfg (you should replace myenvironment with your username
or whatever makes sense to describe your own personal environment), and install it with:

sprinter install myenvironment.cfg

When you run the above command, you will first be prompted to configure sprinter if you haven’t already.

The next thing sprinter will do is install the ‘myenvironment’ environment. As defined above, this consists of:

	install brew if you don’t have it already (OSX Users)

	use brew or apt-get to install git

	create an ssh key just for github, and add it to the ssh
configuration file

Now you just add the ssh key to github, and you’re done! (you can find
the path to the ssh file in your ~/.ssh/config file) (Unfortunately
it’s not possible to add the key to github programatically)

This outlines a lot of the basic functionality that sprinter provides:

	Multiple environments can be installed at the same time, with
different specific names. In this case, we chose to name our
environment ‘myenvironment’

	adding environment configuration through ‘features’. a feature is
decribed by a section in the configuration file (besides
‘config’). In this example, we have two features:

	‘git’, which installs git

	‘github’, which generates an ssh key

Now that’s not super difficult, so let’s try something more complicated.

sub [https://github.com/37signals/sub] is a command namespacing tool
that allows the creation of subcommands. (e.g. moving to your
workspace directory or running your server). Let’s try adding this to our configuration.

Every feature needs a formula to define what the actual feature is
going to do. sprinter.formula.ssh, as shown above, generates ssh
keys. sprinter.formula.package installs packages from the appropriate
package managers. So how about cloning git repositories? Luckily, sprinter has a formula
for this as well: sprinter.formula.git. We can add a new feature by
adding it’s configuration into the environment config. We’ll add a
section to myenvironment.cfg now:

[config]
namespace = myenvironment

[git]
formula = sprinter.formula.package
apt-get = git-core
brew = git

[github]
formula = sprinter.formula.ssh
keyname = github.com
nopassphrase = true
type = rsa
host = github.com
user = git
hostname = github.com

[sub]
formula = sprinter.formula.git
depends = github
url = git://github.com/mygithub/sub.git
branch = mybranch
rc = eval "$(%(sub:root_dir)/bin/sub init -)"

The git formula clones a git repository into sprinter’s directory
(typically ~/.sprinter). In the sub feature, we then evaluate sub’s
init script by injecting ‘eval “$(%(sub:root_dir)/bin/sub init -)”’ into one’s .bashrc or .zshrc file.

You can get more information about each of the formulas, and what they
do, on the List of existing sprinter formulas page.

Now remember at this point, sprinter already knows that you have an
environment ‘myenvironment’ installed.
Instead of running an install again, you can run an ‘update’ command on the environment:

sprinter update myenvironment

The environment ‘myenvironment’ knows where it found the file last
time, and will record it’s location for updating in the
future. Although storing it locally is perfectly fine, it makes more
sense to throw it online somewhere where all of your machines can
access it. as an example, check out github user toumorokoshi’s environment configuration file:

https://raw.github.com/toumorokoshi/yt.rc/master/toumorokoshi.cfg

variables in sprinter and referencing other formulas

In the above example, you’ll see that you can reference variables and
information about other formulas in the values set. In the ‘sub’ example,
the value %(sub:root_dir)s in the ‘rc’ option gets replaced with the directory of the sub feature
during execution. This can make it very easy to perform operations
that rely on information about other features, or the global configuration.

Here’s some examples of variables that are set in the above environment:

	%(sub:url)s resolves to git://github.com/mygithub/sub.git

	%(config:namespace)s resolves to ‘myenvironment’

Grabbing user input

Sprinter also provides the capability to prompt the installer for input when installing a sprinter environment. Some common examples are:

	getting a username

	getting passwords for various services

	getting configuration options (version control root directories,
workspaces)

You can grab user input by adding an ‘inputs’ option to any
feature. Here’s an example of getting a user’s username, password, and git root
then using it to make the git root and upload an ssh key through a rest api:

[config]
inputs = gitroot==~/git/

[create_git_root]
formula = sprinter.formula.command
install = mkdir -p %(config:gitroot)s
env = export GITROOT=%(config:gitroot)s

[stash]
inputs = username
 githostpassword?
formula = sprinter.formula.ssh
depends = curl
keyname = mygithost.com
nopassphrase = true
type = rsa
user = git
hostname = mygithost.com
install_command = curl -k -u '%(config:username)s:%(config:githostpassword)s' -X POST -H "Accept: application/json" -H "Content-Type: application/json" https://mygithost.com/rest/ssh/1.0/keys -d '{"text":"{{ssh}}"}'
use_global_ssh = False

Note the section ‘inputs’ has specific syntax:

gitroot==~/git/ # the == provides a default to the parameter ~/git/
username # this is a standard, just asks for a username
githostpassword? # the question mark makes it a hidden parameter on input, for passwords and other sensitive data

If you run a sprinter install of this configuration, you would be prompted to enter the variables specified:

$ sprinter install sshexample.cfg
Checking and setting global parameters...
Installing environment sshexample...
please enter your gitroot (default ~/git/):
please enter your username:
please enter your githostpassword:

All prompted variables in the sprinter configuration are added to the
config section, and can be used with %(config:MYVAR)s. In the example
above, %(config:username)s will resolve to whatever the username
parameter was.

When you update the environment in the future, you don’t have to enter
the parameters again. This is because sprinter environments remember
parameters (except passwords/secret parameters. Sprinter stores values
in plaintext, so it’s never a good idea to store passwords that
way.). If you want to re-enter parameters, you have to do an update
with a –reconfigure:

$ sprinter update sshexample --reconfigure

rc and env

If you look at the configuration above, two parameters can be applied
to almost all commands. Those are ‘rc’ and ‘env’. rc and env handle
the actual content that is injected into your shell (e.g. what goes in
your .bashrc or .zshrc). For example, a GoLang installation requires
some environment variables set. You can do so like this:

[golang-debian]
systems = debian
formula = sprinter.formula.unpack
executable = bin/go
symlink = go
remove_common_prefix = true
url = https://go.googlecode.com/files/go1.1.linux-amd64.tar.gz
type = tar.gz
env = export GOROOT=%(golang-debian:root_dir)s
rc = function go() {
 go version
 }

(the sprinter.formula.unpack formula handles unpacking of tar.gz, zip,
(and dmg files for OSX)). Here we set an environment variables in
‘env’, and put functions in ‘rc’. This ensures that environment
variables are available for graphical applications, while function are
available for shells.

It’s ok not to get into specifics, most of the time just follow these rules:

	environment variables go into ‘env’

	everything else goes into ‘rc’

What next?

Congratulations! You know a majority of the functionality you need in
sprinter. If you have questions about how to do specific things, try
the FAQ or look at one of the doc pages, or post a question at our
Google Group [https://groups.google.com/forum/#!forum/sprinter-dev]

Also check out the snippets [https://github.com/toumorokoshi/sprinter/tree/develop/snippets]
section. This is a set of snippets that describe how to install common
things like node.js

FAQ

Sprinter keeps overriding my custom *rc! How can I stop it?

Sprinter will always inject itself after everything in a profile or rc
file, with the exception of text in a block surrounded by
#SPRINTER_OVERRIDES. These will always run after any sprinter
configuration.

How do I make a sprinter formula?

A sprinter formula is just a python module or egg that a python class
extends the ‘formulabase’ class, located in
sprinter.formula.formulabase [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formulabase.py].

If you’re not familiar with python, it’s easier to just follow an
example, like this one: https://github.com/toumorokoshi/yt.formula.node.

I need help! Who do I talk to?

If you have a question about a specific formula, it’s best to pots a bug or talk to the author or the formula.

If you have questions about sprinter, your best bet is to post a message in the
Google Group [https://groups.google.com/forum/#!forum/sprinter-dev].

If there’s behaviour that you think is a bug, you can also
create a ticket [https://github.com/toumorokoshi/sprinter/issues?state=open].

Sprinter Examples

Here are some cool ways to use sprinter!

Sprinter patterns

A good pattern that developers tend to follow is to store all of their
environment rc files (.emacs, .vimrc, etc) in a git repository, and
clone and symlink the result. sprinter can automate that pattern. Look
at this example section below:

[ytrc]
formula = sprinter.formula.git
depends = github,git
url = git://github.com/toumorokoshi/yt.rc.git
command =
 rm $HOME/.vimrc
 ln -s %(ytrc:root_dir)s/.vimrc $HOME/.vimrc
 rm $HOME/.screenrc
 ln -s %(ytrc:root_dir)s/.screenrc $HOME/.screenrc
 rm $HOME/.emacs.d
 ln -s %(ytrc:root_dir)s/emacs $HOME/.emacs.d
 rm $HOME/.viper
 ln -s %(ytrc:root_dir)s/.viper $HOME/.viper
 rm $HOME/.emacs
 ln -s %(ytrc:root_dir)s/emacs/.emacs $HOME/.emacs
 rm $HOME/.tmux.conf
 ln -s %(ytrc:root_dir)s/.tmux.conf $HOME/.tmux.conf
rc = . %(ytrc:root_dir)s/rc

Installing Sub

sub [https://github.com/37signals/sub] is a command namespacing tool
that allows the creation of subcommands. (e.g. moving to your
workspace directory or running your server). This works well with sprinter because:

	sub creates a clear, understandable namespace for shell commands

	sprinter downloads executable and dependencies, and updates the environment needed for those commands

Here’s an example sub configuration section:

[sub]
formula = sprinter.formula.git
depends = github
url = git://github.com/mygithub/sub.git
branch = mybranch
rc = eval "$(%(sub:root_dir)/bin/sub init -)"

List of existing sprinter formulas

The following are a list of existing sprinter formulas:

	sprinter.formula.command [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/command.py]
: a formula to run a shell command during a specific state

	sprinter.formula.eggscript [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/eggscript.py]
: a formula to install a python executables that exists as eggs

	sprinter.formula.env [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/env.py]
: a formula to set environment variables

	sprinter.formula.git [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/git.py]
: a formula to clone git repositories

	sprinter.formula.package [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/package.py]
: a formula to install packages via native package managers

	sprinter.formula.perforce [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/perforce.py]
: a formula to setup perforce version control

	sprinter.formula.ssh [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/ssh.py]
: a formula to setup ssh keys and configuration

	sprinter.formula.template [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/template.py]
: a formula download a file, specialize it, and put the result where desired

	sprinter.formula.unpack [https://github.com/toumorokoshi/sprinter/blob/develop/sprinter/formula/unpack.py]
: a formula to extract compressed files, and symlink desired executables

	yt.formula.node [https://github.com/toumorokoshi/yt.formula.node]
: install node.js and npm packages

Sprinter Formulas

Sprinter formulas are the building block of sprinter environments:
they handle a specific piece of functionality of your environment,
from cloning a git repository to install system packages.

In your sprinter environment configuration, each section (aside from
config, which is intended for environment configuration) represents a
configured formula, knows as a feature. Here is an
example:

[sub]
formula = sprinter.formula.git
url = git://github.com/Toumorokoshi/sub.git
branch = yusuke
rc = temp=`pwd`; cd %(sub:root_dir)s/libexec && . sub-init2 && cd $tmp

This section:

	utilizes the standard sprinter git formula

	clones a git repo from the url specified

	checks out a specific branch yusuke

	adds the initialization command to the environment’s .rc script

Configuration parameters vary from formula to formula, so look at the
documentation to figure out which parameters are available to you.

Now let’s talk more about formulas in detail.

Where to find formulas

Formulas are either included in the sprinter standard library, or can be sourced through python’s pypi package repository, or through a url.

A list of available formulas can be found on the List of existing sprinter formulas page.

Standard Formula Options

Although sprinter formulas perform different functions, they all have
a common set of functionality to facilitate workflows like adding
files to the init script.

These functions are:

	‘rc’: this will add lines into the .rc of your environment, thereby
being added to your environment if it’s activated. (for setup and
updates)

	‘env’: this will add lines into the .env of your environment, thereby
being added to your environment if it’s activated. (for setup and
updates)

	‘command’: this will run the specified command after the formula is finished (for setup and updates)

	‘systems’: this specifies the systems that this particular formula should run on. The currently supported values are:
	osx = OSX systems

	debian = debian-based systems

Manifests

This covers the configuration required for a manifest, and the advanced aspects involved.

Special Sections

The following sections have a special meaning in a manifest:

config

The config section is where all user variables are stored. in
addition, it can also house the name of the environment, input
variables, and any standard confguration you need in your environment.

One can also add messages to the beginning and the end of sprinter with the following variables:

	message_success: print a message at the end of a sprinter command, on success

	message_failure: print a message at the end of a sprinter command, on failure

Variable substitution

Feature configurations in a manifest have the ability to reference
each other: specifically, they utilized the following format:

%(FEATURE:PROPERTY)s

	E.G. something like %(git:configpath)s will reference the

	‘configpath’ property of the ‘git’ feature. In addition to other
features, it is also possible to reference the config sections as
well, with:

%(config:PROPERTY)s

Common usage examples for this include having a single username
variable in the input, then resolving it into subsequent features
with: %(config:username)s

Filters

Sprinter also supports some filters, to convert strings into a desired
format. For example, to escape special characters, you can use:

%(config:password|escaped)

To reference the password variable, escaped. The escaped function uses the ‘re.escape’ method in python.

Environment Lifecycle

The environment lifecycle was designed to be minimal and intuitive. Actions occur as they are necessary.

Installation

When an environment is installed for the first time, the ‘install’
directive is called on every feature.

Upgrade

When an environment is upgraded:

	newly listed features have the ‘install’ directive called on them.

	existing features have the ‘update’ directive called on them.

	features no longer listed in have the ‘remove’ directive called on them.

	features with a different formula will first have the old formula removed, and the new formula installed

Remove

When an environment is removed, every feature has the ‘remove’ directive called on them.

Deactivate

When an environment is deactivated, every feature has the ‘deactivate’ directive called on them.

Activate

When an environment is activated, every feature has the ‘activate’ directive called on them.

Sprinter Internals

This page discusses the internals of a sprinter environment. Specifically, the building blocks that constitute a sprinter environment.

Environment activation/deactivation

The main tool that environments are activated and deactivated is
through “injections” of text into various configuration files on a
client machine. A common injections that occurs is injecting the .rc
file for an environment into a .bashrc/.bash_profile like so:

#sprinter-ENVIRONMENT
inject environment
#sprinter-ENVIRONMENT

Injections can be performed on any set of files that exist with an environment. An example of common ones are:

	the .ssh/config file

	.pypirc for local repositories

	.vimrc for vim configuration

	.emacs for emacs configuration

And more! Any file can have configuration injected, which should be removed in the activate/deactivate step.

The .rc file

Every sprinter environment has a .rc file at it’s core. Identical in
concept to a .bashrc or .bash_profile, this .rc file contains a
majority of the configuration of the setup for an environment.

The .sprinter-ENVIRONMENT directory

A majority of the files required for a sprinter environment are stored
in a .sprinter-ENVIRONMENT directory within

Features

Each section in a sprinter configuration represents a “feature”, which
exists in a particular state. Each service is dealt with separately,
and is designed a service directory within the configuration root that
it can use to place whatever it would like (clone a git repository,
unpack a package, etc).

OSX Best Practices

	If your formula installs applications, move them applications into
~/Applications. This is to ensure that spotlight can find it, while
containing sandboxing for a user.

Glossary

	environment

	An environment in the sprinter context is a collection
of features for a client machine that can be
described by a sprinter manifest file. Sprinter’s main job is to
install, update, and ultimately manages these environments.

	feature

	A sprinter feature represents a single unit of configuration
for a sprinter environment. A feature should represent a single
modular, functional unit to manage one aspect of an environment,
such as the environment variables, a package that needs to be
installed, or an in-house command line tool.

	formula

	A formula represents a classification of a feature, that
provides the steps to install, update, etc. a feature.

	manifest

	A sprinter manifest is a configuration file describing a
sprinter environment. Sprinter manifest examples can be
found in the source code, or in the Sprinter Tutorial.

	.rc file

	The file that is injected into the
.bashrc or shell’s rc for the client. This performs the
majority of the activation and deactivation of a sprinter
environment. More information can be found at Sprinter Internals.

	.env file

	The file that is injected into the
graphical environment or shell profile on the client. Similar to the .rc file,
this is intended for configuration that specifically affects the
client and not specific functionlity for a interactive shell
(e.g. environment variables instead of shell functions) majority
of the activation and deactivation of a sprinter environment. More
information can be found at Sprinter Internals.

	injection

	An injection is when sprinter-specific configuration is
inserted into an existing configuration file on a client. More
informmation can found at Sprinter Internals.

Index

 Symbols
 | E
 | F
 | I
 | M

Symbols

 	
 	.env file

 	
 	.rc file

E

 	
 	environment

F

 	
 	feature

 	
 	formula

I

 	
 	injection

M

 	
 	manifest

Formula Guidelines

Sprinter provides a lot of flexibility for a variety of use
cases. This page will hopefully explain some the more hidden, nuanced
factors and functionality in writing formulas.

Prompting for values

There are two accepted ways to prompt users for values:

	using the reserved ‘input’ keyword in a formula to define inputs

	overriding the ‘prompt’ method in formulabase

The ‘input’ keyword should be used for values that are always needed
(such as a username/password for version control). The prompt method
should be used for optional configuration or for configuration based
up on the system being installed (such as overwriting existing values)

	NOTE It is not reccomended to maintain state within an

	object. (e.g. defining a variable self.myvar in the prompt method and
then using it in the install method). Although this may work
currently, there is no specification that dictates that the order on
which methods are called against an object will be constant.

Config behaviour

Config Resolution for any values in the ‘config’ section of the
manifest, the target manifest will override source manifest values. This
includes:

	Values obtained from user input

Feature Config Resolution Config resolution for a particular feature
is dictated by the formula’s static ‘resolve’ method, but this
typically utilizes the base classes resolution method, which is target
overriding source values explicitely referenced. Any values that are
not in the target feature config are left alone.

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		Sprinter: Environment Management Made Easier

 		Sprinter Tutorial

 		Installation

 		Build a sprinter configuration file

 		variables in sprinter and referencing other formulas

 		Grabbing user input

 		rc and env

 		What next?

 		FAQ

 		Sprinter keeps overriding my custom *rc! How can I stop it?

 		How do I make a sprinter formula?

 		I need help! Who do I talk to?

 		Sprinter Examples

 		Sprinter patterns

 		Installing Sub

 		List of existing sprinter formulas

 		Sprinter Formulas

 		Where to find formulas

 		Standard Formula Options

 		Manifests

 		Special Sections

 		config

 		Variable substitution

 		Filters

 		Environment Lifecycle

 		Installation

 		Upgrade

 		Remove

 		Deactivate

 		Activate

 		Sprinter Internals

 		Environment activation/deactivation

 		The .rc file

 		The .sprinter-ENVIRONMENT directory

 		Features

 		OSX Best Practices

 		Glossary

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

